

ര്ക്ക്) PCFGs and Independence

The symbols in a PCFG define independence assumptions:

$$\label{eq:supersystem} \begin{split} \mathsf{S} &\to \mathsf{NP} \; \mathsf{VP} \\ \mathsf{NP} &\to \mathsf{DT} \; \mathsf{NN} \end{split}$$

- At any node, the material inside that node is independent of the material outside that node, given the label of that node.
- Any information that statistically connects behavior inside and outside a node must flow through that node.

🕽 Non-Independence 1

■ Independence assumptions are often too strong.

 Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).

Non-Independence II

- Who cares?
 - NB, HMMs, all make false assumptions!
 - For generation, consequences would be obvious.
 - For parsing, does it impact accuracy?
- Symptoms of overly strong assumptions:
 - Rewrites get used where they don't belong.
 - Rewrites get used too often or too rarely.

இத்தி Breaking Up the Symbols

 We can relax independence assumptions by encoding dependencies into the PCFG symbols:

Parent annotation

Marking possesive NPs

■ What are the most useful features to encode?

Annotations

- Annotations split the grammar categories into sub-categories.
- Conditioning on history vs. annotating
 - $P(NP^S \rightarrow PRP)$ is a lot like $P(NP \rightarrow PRP \mid S)$
 - $P(NP-POS \rightarrow NNP POS)$ isn't history conditioning.
- Feature grammars vs. annotation
 - Can think of a symbol like NPANP-POS as NP [parent:NP, +POS]
- After parsing with an annotated grammar, the annotations are then stripped for evaluation.

The Lexicalization Hammer

- Lexical heads important for certain classes of ambiguities (e.g., PP attachment):
- attachment):Lexicalizing grammar creates a
- Lexicalizing grammar creates a much larger grammar.
 - Sophisticated smoothing neededSmarter parsing algorithms needed
 - More data needed
- How necessary is lexicalization?
 - Bilexical vs. monolexical selection
 - Closed vs. open class lexicalization

ີ່ Experimental Setup

■ Corpus: Penn Treebank, WSJ

Training: sections 02-21
Development: section 22 (first 20 files)
Test: section 23

- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Size number of symbols in grammar.
 - Passive / complete symbols: NP, NPAS
 - lacktriangledown Active / incomplete symbols: NP ightarrow NP CC lacktriangledown

| Fidelity

Unlexicalized PCFGs

- What do we mean by an "unlexicalized" PCFG?
- Grammar rules are not systematically specified down to the level of lexical items
 - NP-stocks is not allowed
 - NP^S-CC is fine
 - Closed vs. open class words (NPAS-the)
 - Long tradition in linguistics of using function words as features or markers for selection
 - Contrary to the bilexical idea of semantic heads
 - Open-class selection really a proxy for semantics
- Honesty checks:
 - Number of symbols: keep the grammar very small
 - No smoothing: over-annotating is a real danger

🔊 Unary Splits

- Problem: unary rewrites used to transmute categories so a highprobability rule can be used.
- Solution: Mark unary rewrite sites with -U

Annotation	F1	Size
Base	77.8	7.5K
UNARY	78.3	8.0K

🔊 Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.
- Partial Solution:
 - Subdivide the IN tag.

	VI)		
τÓ		VP		
1				
to	VB		SBAR	
	see	IN'SNT	s	
		if	NP	VP
			NN	VBZ
			advertising	works

Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

(🚵) Othe<u>r Tag Splits</u>

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-
- canonical parents ("not" is an RB^VP) ■ SPLIT-AUX: mark auxiliary verbs with -AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "&" from other conjunctions
- SPLIT-%: "%" gets its own tag.

F1	Size
80.4	8.1K
80.5	8.1K
81.2	8.5K
81.6	9.0K
81.7	9.1K
81.8	9.3K

Tree<u>bank Splits</u>

- The treebank comes with annotations (e.g., -LOC, -SUBJ, etc).
 - Whole set together hurt the baseline.
 - Some (-SUBJ) were less effective than our equivalents.
 - One in particular was very useful (NP-TMP) when pushed down to the head tag.
 - We marked gapped S nodes as well.

Annotation	F1	Size
Previous	81.8	9.3K
NP-TMP	82.2	9.6K
GAPPED-S	82.3	9.7K

స్త్రీ) Yield <u>Splits</u>

- Problem: sometimes the behavior of a category depends on something inside its future yield.
- Examples:
 - Possessive NPs
 - Finite vs. infinite VPs
 - Lexical heads!
- Solution: annotate future elements into nodes.

Annotation	F1	Size	
Previous	82.3	9.7K	
POSS-NP	83.1	9.8K	
SPLIT-VP	85.7	10.5K	

Distance / Recursion Splits

- Problem: vanilla PCFGs cannot distinguish attachment heights.
- Solution: mark a property of higher or lower sites:
 - Contains a verb.
 - Is (non)-recursive.
 - Base NPs [cf. Collins 99]
 - Right-recursive NPs

Annotation	F1	Size
Previous	85.7	10.5K
BASE-NP	86.0	11.7K
DOMINATES-V	86.9	14.1K
RIGHT-REC-NP	87.0	15.2K

Parser	LP	LR	F1	CB	0 CB
Magerman 95	84.9	84.6	84.7	1.26	56.6
Collins 96	86.3	85.8	86.0	1.14	59.9
Current Work	86.9	85.7	86.3	1.10	60.3
Charniak 97	87.4	87.5	87.4	1.00	62.1
Collins 99	88.7	88.6	88.6	0.90	67.1

■ Beats "first generation" lexicalized parsers.